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Abstract

In this article we study the long term behavior of the competitive system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= ∇ ·

[
α(x)∇ u

m

]
+ u(m(x) − u − bv) in �, t > 0,

∂u

∂t
= ∇ · [β(x)∇v] + v(m(x) − cu − v) in �, t > 0,

∇ u

m
· n̂ = ∇v · n̂ = 0 on ∂�, t > 0,

which supports for the first species an ideal free distribution, that is a positive steady state which matches 
the per-capita growth rate. Previous results have stated that when b = c = 1 the ideal free distribution is 
an evolutionarily stable and neighborhood invader strategy, that is the species with density v always goes 
extinct. Thus, of particular interest will be to study the interplay between the inter-specific competition 
coefficients b, c and the diffusion coefficients α(x) and β(x) on the critical values for stability of semi-trivial 
steady states, and the structure of bifurcation branches of positive equilibria arising from these equilibria. 
We will also show that under certain regimes the system sustains multiple positive steady states.
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1. Introduction

The effect of dispersal on species interaction is an important topic in spatial ecology. In many 
cases, patterns of dispersal leading to an ideal free distribution (IFD) are evolutionary stable 
[5–8,10]. Here an ideal free distribution is a positive state which matches the local per-capita 
growth rate, resulting in a situation whereby the species in the equation has fitness equal to zero 
and exhibits no net movement. In particular, for two competitors that are ecologically identical a 
competitor that can attain an IFD can exclude one that can not. However, as we will show in this 
article, if the competition is not symmetric the outcome depends on both the dispersal strategies 
and the asymmetry of interaction. See [14] for a related example.

We will consider a situation where the strength of interactions is allowed to vary, and one 
species uses an ideal free strategy and the other uses a fickian-type diffusion. More precisely, we 
consider the competition system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= ∇ ·

[
α(x)∇ u

m

]
+ u(m(x) − u − bv) in �, t > 0,

∂v

∂t
= ∇ · [β(x)∇v] + v(m(x) − cu − v) in �, t > 0,

∇ u

m
· n̂ = ∇v · n̂ = 0 on ∂�, t > 0.

(1.1)

The domain � is bounded, with ∂� smooth and n̂ the outward unit normal. The diffusion co-
efficients α(x), β(x) are smooth and positive in �̄. The function m(x), which accounts for the 
growth rate, is also smooth and positive in �̄. The competition coefficients b, c are positive and 
constant. The initial conditions are assumed to be nonnegative and smooth, that is

u(x,0), v(x,0) ≥ 0 in �̄. (1.2)

In this paper we analyze how the interaction coefficients b and c influence the dynamics of the 
system (1.1). Previous work shows that when b = c = 1, then competitive exclusion holds, and 
the competitor which follows the ideal free strategy prevails (see [1]). It readily follows from this 
result and comparison principles that the same conclusion can be drawn for any combination of 
competition coefficients with c ≥ 1 and b ≤ 1. It is of particular interest to ask how and to what 
extent this advantage derived from ideal free dispersal continues when there is a trade off relative 
to competitive impact, for example when b > 1 but c < 1.

To study the dynamics of (1.1) we need to consider the associated steady-state system

⎧⎪⎨
⎪⎩

Lu + u(m(x) − u − bv) = 0 in �,

Mv + v(m(x) − cu − v) = 0 in �,

∇ u
m

· n̂ = ∇v · n̂ = 0 on ∂�,

(1.3)

where the operators L and M are defined as:

Lu ≡ ∇ ·
[
α(x)∇ u ]

, Mv ≡ ∇ · [β(x)∇v] .

m
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Since ∇ (
m
m

) = 0, Lm = 0 and so m is a positive equilibrium of

⎧⎨
⎩

ut = Lu + u(m(x) − u) in �, t > 0,

∇ u

m
· n̂ = 0 on ∂�, t > 0,

which can be regarded as an ideal free distribution. That such problems admit ideal free dis-
persal strategies was established in [3,2]. In this case, the dispersal strategy is a form of area 
restricted search. Another related movement strategy which produces an ideal free distribution 
as an equilibrium relative to logistic dynamics comes from combining diffusion with advection 
up the gradient of logm (as in [6]). In that case, L could be taken as

Lu = μ∇ · (∇u − u∇ logm) in �,

subject to the no-flux boundary condition

(∇u − u∇ logm) · n̂ = 0 on ∂�.

This system admits two semi-trivial steady-state solutions of (1.1), that is solutions of (1.3)
in which one component is positive and the other is zero. Since only the first species admits an 
ideal free distribution, we have that (m(x), 0) is a semi-trivial solution of (1.3), while (0, θ) is 
the other one, with θ �≡ m. We will see that coexistence and exclusion will depend largely on 
the stability of these solutions. Specifically, we identify a parameter bcr > 1 so that in the region 
b < bcr we have that (0, θ) is unstable, while if b > bcr it is asymptotically stable. Thus, bcr

accounts for the strength of the advantage of the ideal free distribution. Concerning (m, 0) we 
have that it is unstable when c < 1, and it is asymptotically stable for c > 1.

We will use stability analysis, bifurcation theory and monotone dynamical systems theory 
([13,16]) to understand the set of equilibria of (1.1). We find conditions where we get coexistence, 
exclusion and multiple equilibria. In what follows we present some relevant features of the model 
and results obtained.

As mentioned above, a key property of system (1.1) is that it induces a strongly monotone dy-
namical system, that is if (u1, v1) and (u2, v2) are two solutions of (1.1) with u1(x, 0) ≥ u2(x, 0), 
v1(x, 0) ≤ v2(x, 0) for all x ∈ �̄ and (u1(·, 0), v1(·, 0)) �≡ (u2(·, 0), v2(·, 0)), then u1(x, t) >
u2(x, t), v1(x, t) < v2(x, t) for all x ∈ �̄ and t > 0. Using the theory of monotone dynamical 
systems, we will be able to establish results on coexistence, a priori bounds, and multiplicity of 
solutions, among other observations.

The stability properties of these steady states are established in the following proposition:

Proposition 1.1. For all 0 < c < 1, the steady state (m, 0) of (1.1) is unstable, while it is linearly 
asymptotically stable for c > 1.

There exists a bcr > 1 such that for all 0 < b < bcr the steady state (0, θ) of (1.1) is unstable, 
while it is linearly asymptotically stable for b > bcr .

As we will see in Section 2, with the aid of this proposition we obtain that for 0 < c < 1 and 
0 < b < bcr there exists a stable positive steady state solution, and for c > 1 and b > bcr there 
exists an unstable positive steady state of (1.1). The values c = 1 and b = bcr are critical, and 
bifurcation occurs in both cases. Indeed we have:
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Theorem 1.2. For any b > 0, bifurcation of positive solutions of (1.3) from (m, 0) occurs as 
the parameter c crosses 1. Moreover, the set of positive solutions near (m, 0) is described by a 
smooth curve (u(ε), v(ε), c(ε)) where u = m + w(ε), v = v(ε) with

w(ε) = εbη + εw̃(ε); v = ε + εṽ(ε) and c = 1 + γ (ε),

where η < 0, w̃(0) = ṽ(0) = 0 and γ (0) = 0.
Analogously, for any c > 0, bifurcation of positive solutions of (1.3) from (0, θ) occurs as 

b crosses bcr . The set of positive solutions near (0, θ) is a smooth curve u = εϕ0 + εw̃(ε), 
v = θ + εψ0 + εz̃(ε) for b = bcr + δ(ε), with w̃(0) = z̃(0) = 0, δ(0) = 0, ϕ0 > 0 and ψ0 < 0.

The direction taken by the bifurcation branches, namely the sign of γ (ε) and δ(ε) above, is 
key to determining the stability properties of the bifurcating solutions, due to the principle of 
exchanged stability. This direction is determined by the value of the parameter b in the case of 
the bifurcation from (m, 0), and c in the case of (0, θ). More precisely, we have the following 
result:

Proposition 1.3. There exists a b∗ > 1 such that the bifurcating solutions (m + w(ε), v(ε)) of 
(1.1) for c = 1 + γ (ε) as described in Theorem 1.2, are unstable for b > b∗, and locally asymp-
totically stable for b < b∗.

Similarly, there exists c∗ > 0 such that the bifurcating solutions (εϕ0 + εw̃(ε), θ + εψ0 +
εz̃(ε)) of (1.1) for b = bcr + δ(ε) as above, are unstable for c > c∗, and locally asymptotically 
stable for c < c∗.

As stated, the coefficients b∗ and c∗ play an important role in the dynamics of (1.1). Moreover, 
depending on the relationship between bcr and b∗ as well as 1 and c∗, we can possibly have cases 
where there are two ordered steady states of (1.1) that share the same stability properties: either 
both unstable, or both locally asymptotically stable and then, by some properties of monotone 
dynamical systems, another positive equilibrium of (1.1) exists. We explore this situation in 
Section 5, where we parametrize the diffusion coefficients, to construct such examples in limiting 
cases.

Theorem 1.4. Consider α(x) = μα0(x) and β(x) = νβ0(x), where μ, ν are positive parameters. 
We have the following examples, where multiple positive steady states of (1.1) arise:

a) There exists a number b̄1 > 0 such that for b ∈ (1, b̄1) we can find μ0, ν0, so that for all 
0 < μ < μ0, ν > ν0, there is a c > 0 for which the corresponding system (1.1) admits two 
positive steady states, one unstable and one locally asymptotically stable.

b) There exists a number b̄2 > 0 such that for b ∈ (1, b̄2) there are μ0, ν0 so that for all μ > μ0, 
0 < ν < ν0, there is a c > 0 for which (1.1) admits two positive steady states, one unstable 
and one locally asymptotically stable.

Finally, we point out that in certain cases, whenever one of the competition coefficients is 
large and the other is in a certain range, no positive solution of (1.3) exists. In this situation, 
competition drives the dynamics. More precisely, we have the following result, which we prove 
in Section 3.
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Theorem 1.5. There exists b̄∗ > 0 such that for all b > b̄∗ and 0 ≤ c ≤ 1 the system (1.1) does not 
admit a positive steady state. Similarly, there is c̄∗ > 0 so that nonexistence also occurs whenever 
c > c̄∗ and 0 ≤ b ≤ bcr .

In the case when 0 ≤ c ≤ 1 and b large, the global attractor of (1.1) is (0, θ), while when 
0 ≤ b ≤ bcr and c is large the global attractor is (m, 0).

In Section 6 we discuss the results obtained, providing examples of several configurations 
regarding the steady state structure of (1.1) in the (b, c) parameter space.

2. Preliminary results

In this section we will state some basic facts that are needed for characterizing coexistence 
regions. We start by observing that by using the change of variables U = u

m
and V = v we have 

that system (1.1) is equivalent to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂U

∂t
= 1

m
∇ · [α(x)∇U ] + U(m(x) − mU − bV ) in �, t > 0,

∂V

∂t
= ∇ · [β(x)∇V ] + V (m(x) − cmU − V ) in �, t > 0,

∇U · n̂ = ∇V · n̂ = 0 on ∂�, t > 0.

(2.4)

By standard theory system (2.4) is competitive and the induced semiflow strongly monotone. 
Using this, we can proceed as in Lemma 5.4 of [9] to conclude that (1.1) is strongly monotone 
as well.

Lemma 2.1. Let (ui, vi) for i = 1, 2 be two solutions of (1.1), with

u1(x,0) ≥ u2(x,0), v1(x,0) ≤ v2(x,0) for all x ∈ �̄

and (u1(·, 0), v1(·, 0)) �≡ (u2(·, 0), v2(·, 0)). Then u1(x, t) > u2(x, t), v1(x, t) < v2(x, t) for all 
x ∈ �̄ and t > 0.

The other important issue is to characterize the linear stability of the two semitrivial steady 
state solutions of (1.1), namely (m, 0) and (0, θ), where θ is the unique positive solution of

Mv + v(m(x) − v) = 0 in �, ∇v · n̂ = 0 on ∂�. (2.5)

Indeed, as stated in the following result, characterizing the stability properties (m, 0) and (0, θ)

is key for establishing the existence of positive steady state solutions of (1.1).

Proposition 2.2. We have that

(1) if (m, 0) and (0, θ) are unstable, then there exists a stable positive equilibrium of (1.1);
(2) if (m, 0) and (0, θ) are stable, then there exists an unstable positive equilibrium of (1.1);
(3) if (1.1) does not admit a positive steady state solution, then one of the semi-trivial steady 

states is unstable and the other one is globally asymptotically stable.
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This lemma can be proved following Theorem 8 of [1]. The following results establish the 
linear stability of (m, 0) and (0, θ).

Lemma 2.3. For all 0 < c < 1, the steady state (m, 0) of (1.1) is unstable, while it is linearly 
asymptotically stable for c > 1.

Proof. We proceed as in Lemma 5.5 of [9]. The linearization of (1.1) at the steady state (m, 0)

is given by the triangular system

⎧⎪⎨
⎪⎩

Lϕ − mϕ − bmψ = λϕ in �,

Mψ + m(1 − c)ψ = λψ in �,

∇ ϕ
m

· n̂ = ∇ψ · n̂ = 0 on ∂�.

(2.6)

If c < 1 then the second equation admits a principal eigenvalue λ0 > 0 with corresponding 
eigenfunction ψ0 > 0. In this case, for a fixed ψ0 > 0 the first equation is solvable, with the 
corresponding ϕ0 < 0. Then (m, 0) is unstable.

When c > 1 then the principal eigenvalue of the second equation of (2.6) is negative. Thus, if 
(2.6) admits an eigenvalue λ with a positive real part, then the corresponding ψ ≡ 0, and then ϕ
has to be a solution of

Lϕ − mϕ = λϕ in �,∇ ϕ

m
· n̂ = 0 on ∂�.

Since the principal eigenvalue of this equation is negative, we conclude that ϕ ≡ 0 as well, which 
contradicts the fact that λ is an eigenvalue. �
Lemma 2.4. There exists a bcr > 1 such that for all 0 < b < bcr the steady state (0, θ) of (1.1) is 
unstable, while it is linearly asymptotically stable for b > bcr .

Proof. Analogously to the proof of Lemma 2.3 the linearized stability of (0, θ) is characterized 
through the sign of the principal eigenvalue of the equation

Lϕ + ϕ(m − bθ) = λϕ in �, ∇ ϕ

m
· n̂ = 0 on ∂�, (2.7)

namely, (0, θ) is unstable if the principal eigenvalue of (2.7) is positive and asymptotically stable 
if it is negative. Now, we have that there exists a unique bcr > 0 such that the principal eigenvalue 
of (2.7) corresponding to b = bcr is 0. To verify that bcr > 1, we multiply the equation (2.7) by m

ϕ
, 

with ϕ the corresponding positive eigenfunction, and integrate over � obtaining that

∫
�

m(m − bcrθ) dx = −
∫
�

α(x)

∣∣∣∇ ϕ

m

∣∣∣2 m2

ϕ2 dx < 0,

and hence, bcr >

∫
� m2∫ .

� mθ
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Integrating (2.5) with v = θ yields 
∫
�

mθ = ∫
�

θ2. Consequently,

∫
�

θ2 =
∫
�

mθ ≤
⎛
⎝∫

�

m2

⎞
⎠

1
2
⎛
⎝∫

�

θ2

⎞
⎠

1
2

,

and then 
∫
�

θ2 ≤ ∫
�

m2. Hence, bcr > 1.
Finally, by comparison the principal eigenvalue of (2.7) is positive when 0 < b < bcr and 

negative if b > bcr . This concludes the proof. �
Using a variational formulation of a weighted principal eigenvalue problem, we obtain that 

bcr can be expressed as:

bcr = sup
ϕ∈W 1,2(�)\{0}

[
− ∫

�
α(x)|∇ϕ|2 + ∫

�
m2ϕ2∫

�
mθϕ2

]
. (2.8)

This formula will be used later to estimate bcr .
Observe that using Lemma 2.3, Lemma 2.4 and Proposition 2.2, we have the following basic 

existence result:

Proposition 2.5. For 0 < b < bcr and 0 < c < 1 the system (1.1) admits a stable positive equi-
librium, and for b > bcr and c > 1 it admits an unstable positive equilibrium.

Another important tool for the construction of the regions of existence is the method of upper 
and lower solutions, which holds since we can work with the equivalent system (2.4).

Lemma 2.6. Suppose that (u1, v1), (u2, v2) satisfy 0 ≤ u1 ≤ u2 and v1 ≥ v2 ≥ 0 in �̄ and

⎧⎪⎨
⎪⎩

Lu1 + u1(m(x) − u1 − bv1) ≤ 0, Lu2 + u2(m(x) − u2 − bv2) ≥ 0 in �,

Mv1 + v1(m(x) − cu1 − v1) ≥ 0, Mv2 + v2(m(x) − cu2 − v2) ≤ 0 in �,

∇ u1
m

· n̂ ≤ 0, ∇ u2
m

· n̂ ≥ 0, ∇v1 · n̂ ≥ 0, ∇v2 · n̂ ≤ 0 on ∂�,

(2.9)

then there exists a solution (u∗, v∗) of (1.3) with u1 ≤ u∗ ≤ u2 and v1 ≥ v∗ ≥ v2.

As a consequence of this result, and the strong maximum principle, we have the following a 
priori bound for the steady states of (1.3).

Corollary 2.7. If (u∗, v∗) is a nonnegative equilibrium of (1.3), then u∗ ≤ m and v∗ ≤ θ . More-
over, if u∗ and v∗ are positive then u∗ < m and v∗ < θ .

Furthermore, we have a comparison lemma for coexistence states.

Lemma 2.8. If the system (1.3) has a coexistence state for parameters (b, c) = (b̄, c̄) with b̄ < bcr

and c̄ > 1, then (1.3) has a coexistence state for parameters (b, c) = (b̄, c̃) with c̃ ∈ (0, c̄). Also 
we have a coexistence state for (b, c) = (b̃, c̄) with b̃ ∈ (b̄, bcr ).
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Recall if b < bcr , c < 1 then there exists a coexistence state for the system (1.3) by Proposi-
tion 2.2, so we will study the case when (m, 0) and (0, θ) have different stabilities.

Proof. Let (ū, v̄) be a coexistence state for parameters (b̄, c̄), so that for c̃ ∈ (0, c̄) we have that

{
Lū + ū(m(x) − ū − b̄v̄) = 0 in �,

Mv̄ + v̄(m(x) − c̃ū − v̄) ≥ 0 in �,

hence (ū, v̄) is an upper solution of system (1.3) with parameters (b̄, c̃).
On the other hand, since b̄ < bcr the problem:

Lϕ + ϕ(m − b̄θ) = λϕ in �, ∇ ϕ

m
· n̂ = 0 on ∂�,

has a principal eigenvalue λ0 > 0 with a respective eigenfunction ϕ0 > 0. If ε > 0 is small enough 
then (εϕ0, θ) satisfies

{
L(εϕ0) + εϕ0(m(x) − εϕ0 − b̄θ) = εϕ0(λ0 − εϕ0) > 0 in �,

Mθ + θ(m(x) − c̃εϕ0 − θ) = −εc̃θϕ0 < 0 in �,

therefore (εϕ0, θ) is a lower solution and since εϕ0 < ū and v̄ < θ for ε small enough, we 
conclude that there exists a coexistence state for (b, c) = (b̄, c̃). The proof of the other case is 
similar. �

We also have the following result.

Lemma 2.9. If the system (1.3) has a coexistence state for parameters (b, c) = (b̄, c̄) with b̄ > bcr

and c̄ < 1, then (1.3) has a coexistence state for parameters (b, c) = (b̄, c̃) with c̃ ∈ (c̄, 1). Also 
we have a coexistence state for (b, c) = (b̃, c̄) with b̃ ∈ (0, b̄).

3. Nonexistence of positive steady states

We will prove that if one of the competition coefficients is large then no positive steady states 
exist for system (1.1), and thus one of the semi-trivial steady states is the global attractor for the 
system.

Theorem 3.1. There exists b̄∗ > 0 such that for all b > b̄∗ and 0 ≤ c ≤ 1 the system (1.1) does 
not admit a positive steady state.

Proof. We will prove the result by contradiction. Suppose that we have a sequence (un, vn) of 
solutions of (1.3), with un > 0, vn > 0, corresponding to the parameters 0 ≤ cn ≤ 1 and bn → ∞. 
Without loss of generality, we can assume that cn → c̄, with 0 ≤ c̄ ≤ 1.

Integrating the first equation of (1.3)

∫
un(m(x) − un − bnvn) dx = 0, (3.10)
�
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so that ∫
�

unvn dx = 1

bn

∫
�

(m(x)un − u2
n) dx.

Since by Corollary 2.7 we have that un, vn are bounded, we conclude that 
∫
�

unvn dx → 0 as 
n → ∞ and unvn → 0 in Lp(�) for all p ≥ 1.

Using the above bound we obtain that, except possibly for a subsequence, there exists v̄ ∈
W 2,p(�) such that vn → v̄. Indeed, we have that vn satisfies

Mvn + vn(m(x) − cnun − vn) = 0 in �, ∇vn · n̂ = 0 on ∂�,

and because vn is bounded and unvn → 0 in Lp(�), we can use Sobolev’s imbedding theorems 
and elliptic regularity estimates to conclude the convergence of a subsequence of {vn}. Moreover, 
taking the limit in the above equation, we obtain that v̄ ≥ 0 satisfies the equation

Mv + v(m − v) = 0 in �, ∇v · n̂ = 0 on ∂�,

and thus we have that either v̄ = θ or v̄ = 0. If v̄ = θ , then for n large enough, m −un −bnvn < 0, 
which contradicts (3.10). Therefore, v̄ = 0.

Consider now wn = vn||vn||∞ and write system (1.3) in terms of un and wn as

⎧⎪⎨
⎪⎩

Lun + un(m(x) − un − bn||vn||∞wn) = 0 in �,

Mwn + wn(m(x) − cnun − ||vn||∞wn) = 0 in �,

∇ un

m
· n̂ = 0, ∇wn · n̂ = 0 on ∂�.

(3.11)

Without loss of generality, we need to consider two cases:

Case 1 bn||vn||∞ → ∞ as n → ∞.
Case 2 bn||vn||∞ → d as n → ∞, with d ≥ 0.

If Case 1 holds, because ||vn||∞ → 0, we can proceed as before to prove that, except possibly 
for a subsequence, wn → w̄ in W 2,p(�) with w̄ solution of

Mw + mw = 0 in �, ∇w · n̂ = 0 on ∂�.

If we integrate this equation on � we obtain that w̄ ≡ 0, contradicting the fact that ||wn||∞ = 1. 
Therefore, Case 2 holds.

Observe that since un, wn and bn||vn||∞ are bounded, we have that un is also bounded in 
W 2,p(�), and as before we can conclude that up to a subsequence, (un, wn) → (ū, w̄) with 
0 ≤ ū ≤ m, w̄ ≥ 0 and w̄ �≡ 0, with (ū, w̄) a solution of:

⎧⎨
⎩ Lu + u(m(x) − u − dw) = 0 in �, ∇ u

m
· n̂ = 0 on ∂�.

Mw + w(m(x) − c̄u) = 0 in �, ∇w · n̂ = 0 on ∂�.

(3.12)
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If c̄ < 1 then m − c̄ū > (1 − c̄)m > 0, thus we must have that w ≡ 0, which is a contradiction. 
Hence, c̄ = 1 and since m − ū ≥ 0 we can integrate the second equation of (3.12) to get that 
ū = m and as a consequence w = 1. Replacing ū, w̄ in the first equation of (3.12), we obtain that 
d = 0.

We define ϕn = m(x) − un. We already proved that ϕn ≥ 0 and ϕn → 0 as n → ∞. If we 
integrate the first equation of (3.11), we obtain by a simple computation

∫
�

unϕn dx = bn||vn||∞
∫
�

unwn dx,

whence we deduce that for n large

∫
�

ϕn dx ≥ bn||vn||∞|�|δ, (3.13)

where δ = min�̄ m(x)/ max�̄ m(x).
Integrating the second equation of (3.11) we find that

∫
�

wn((1 − cn)m + cnϕn − ||vn||∞wn)dx = 0,

whence ∫
�

cnwnϕn dx ≤
∫
�

wn((1 − cn)m + cnϕn) dx = ||vn||∞
∫
�

w2
n dx.

Because cn → 1, wn → 1, we can deduce from the last inequality that

1

2

∫
�

ϕn dx ≤
∫
�

cnwnϕn dx ≤ 2||vn||∞|�|, (3.14)

for n large enough. Finally, combining (3.13) and (3.14) we obtain

bn||vn||∞ ≤ 4||vn||∞
δ

,

which contradicts bn → ∞. �
We have a similar result when c is large.

Theorem 3.2. There exists c̄∗ > 0 such that for all c > c̄∗ and 0 ≤ b ≤ bcr the system (1.1) does 
not admit a positive steady state.

Proof. Suppose that we have a sequence (un, vn) of positive solutions of (1.3) with respective 
parameters bn, cn such that 0 ≤ bn ≤ bcr and cn → ∞. Without loss of generality, we can suppose 
that bn → b̄, with 0 ≤ b̄ ≤ bcr .
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By using the same technique as in the proof of the previous theorem, we conclude the result 
for b̄ < bcr . Suppose now that b̄ = bcr , so that by the same idea we get (un, vn) → (0, θ) in 
W 2,p(�) and cn||un||∞ → 0 as n → ∞.

Consider ϕn = un||un||∞ , so that by Sobolev’s embeddings and elliptic regularity we get ϕn → ϕ̄

in W 2,p(�), which is solution of the problem:

Lϕ̄ + ϕ̄(m(x) − bcrθ) = 0 in �, ∇ ϕ̄

m
· n̂ = 0 on ∂�,

and ϕ̄ > 0 by the maximum principle. On the other hand consider wn = vn − θ , so that wn ≤ 0
and satisfies:

{
Mwn + wn(m − 2θ) = w2

n + cn||un||∞wnϕn + cn||un||∞θϕn in �

∇wn · n̂ = 0 on ∂�.

By elliptic estimates, there exists C > 0 independent of n, such that

||wn||2,p ≤ C(||w2
n||p + cn||un||∞||wnϕn||p + cn||un||∞||θϕn||p)

As wn → 0 we conclude that ξn = wn

cn||un||∞ is uniformly bounded. Now write system (1.3) in 
terms of ϕn and ξn as

⎧⎪⎨
⎪⎩

Lϕn + ϕn(m(x) − bcr ) = (bn − bcr )θϕn + bncn||un||∞ξn + ||un||∞ϕ2
n in �,

Mξn + ξn(m − 2θ) = wnξn + wnϕn + θϕn in �,

∇ ϕn

m
· n̂ = 0, ∇ξn · n̂ = 0 on ∂�.

We get that, except possibly for a subsequence, ξn → ξ̄ since ξn is uniformly bounded. The 
function ξ̄ is solution of the problem:

Mξ̄ + ξ̄ (m(x) − 2θ) = θϕ̄ in �, ∇ ξ̄ · n̂ = 0 on ∂�,

and ξ̄ < 0 by the maximum principle.
If we multiply the equation of ϕn by ϕ̄

m
and the equation of ϕ̄ by ϕn

m
, we get by integrating and 

subtracting that:

(bn − bcr )

∫
�

ϕnϕ̄θ

m
= −||un||∞

⎛
⎝cnbn

∫
�

ξnϕnϕ̄

m
+

∫
�

ϕ2
nϕ̄

m

⎞
⎠

In this equality, the left-hand side is non-positive since bn ≤ bcr , and for n large enough the 
right-hand side is strictly positive, which is a contradiction. �
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4. Bifurcating solutions from the semitrivial steady states

In this section we are going to characterize the positive solutions of (1.3) which bifurcate from 
the semitrivial solutions (m(x), 0) and (0, θ). For this we will apply the Crandall–Rabinowitz 
Theorem directly to system (1.1) in order to obtain the bifurcating solutions, and to characterize 
their stability. We can do this, since we can make the change of variables U = u

m
and V = v to 

obtain the equivalent system (2.4) which has regular Neumann boundary conditions, but is not in 
divergence form.

4.1. Local bifurcating solutions from (m(x), 0)

By Lemma 2.3, bifurcation of positive steady states from (m(x), 0) can only occur when 
c = 1. We start by fixing b > 0 and setting the following:

X = {(w,v) ∈ W 2,p(�) × W 2,p(�) / ∇ w
m

· n̂ = ∇v · n̂ = 0 on ∂�},
Y = Lp(�) × Lp(�),

(4.15)

with p > N and the map F : X ×R → Y given by

F(u, v, c) =
(

Lu + u(m − u − bv)

Mv + v(m − cu − v)

)
. (4.16)

By definition, (u, v) is a solution of (1.3) if and only if F(u, v, c) = 0. Observe that 
F(m, 0, c) = 0.

To apply the Crandall–Rabinowitz local bifurcation result, we need to study
Ker

(
D(u,v)F (m,0,1)

)
and Range

(
D(u,v)F (m,0,1)

)
, which are characterized in the next 

lemma.

Lemma 4.1. We have that

Ker
(
D(u,v)F (m,0,1)

) = 〈(bη,1)〉 and

Range
(
D(u,v)F (m,0,1)

) = {
(f, g) ∈ Y /

∫
�

g dx = 0
}
,

(4.17)

where η < 0 is the unique solution of

Lη − mη = m in �, ∇ η

m
· n̂ = 0 on ∂�. (4.18)

Proof. To simplify notation, set L0 = D(u,v)F (m, 0, 1). After some standard computations, we 
obtain that

L0(ϕ,ψ) =
(

Lϕ + m(−ϕ − bψ)

Mψ

)
, (4.19)

thus, if (ϕ, ψ) ∈ Ker (L0) then ψ is constant and Lϕ − mϕ = bmψ , whence the characterization 
of Ker (L0) given in (4.17) follows.
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To obtain Range (L0) we need to find all (f, g) ∈ Y , such that there is (ϕ, ψ) ∈ X for which

Lϕ + m(−ϕ − bψ) = f, and Mψ = g.

The second equation above is solvable if and only if 
∫
�

g = 0, and since L − m is invertible 
the first equation has a unique solution once we have determined ψ . Hence, Range (L0) ={
(f, g) ∈ Y /

∫
�

g = 0
}
, which concludes the proof. �

Proposition 4.2. There exists a neighborhood U of ((m, 0), 1) in X × R such that the only so-
lutions of (1.3) in U are {(m, 0)} × R or along a smooth curve � = {(u(ε), v(ε), c(ε)) : ε ∈
(−ε0, ε0)} for some ε0 > 0 where u = m + w(ε), v = v(ε) with

w(ε) = εbη + εw̃(ε), v = ε + εṽ(ε) and c = 1 + γ (ε),

and w̃(0) = ṽ(0) = 0 and γ (0) = 0.

Proof. Since

Ker
(
D(u,v)F (m,0,1)

) = 〈(bη,1)〉 ,

to apply the Crandall–Rabinowitz Theorem we just need to check that

D2
((u,v),c)F (m,0,1)(bη,1) /∈ Range

(
D(u,v)F (m,0,1)

)
.

After a simple computation, we obtain that D2
((u,v),c)F (m, 0, 1)(bη, 1) = (0, −m), and since ∫

�
−m(x) < 0 we obtain the desired result. �
We define the positive and negative branch given respectively by:

�+ = {(u(ε), v(ε), c(ε)) : ε ∈ (0, ε0)}
�− = {(u(ε), v(ε), c(ε)) : ε ∈ (−ε0,0)} (4.20)

As we are interested in positive solutions, from now we will only focus in the positive branch �+.
The following proposition establishes the stability properties of the bifurcating solutions of 

(1.3).

Proposition 4.3. Set

b∗ = |�|∫
�

−η dx
, (4.21)

where η is defined in (4.18). The bifurcating positive solutions (m + w(ε), v(ε)) of (1.3) for 
c = 1 + γ (ε) as given in Proposition 4.2, are unstable for b > b∗, and locally asymptotically 
stable for b < b∗. Also b∗ > 1.



R.S. Cantrell et al. / J. Differential Equations 265 (2018) 3464–3493 3477
Proof. By the principle of exchanged stability, we just need to obtain the direction of the bifur-
cation branch according to the parameter γ . From this result and Lemma 2.3, we will have that 
the positive bifurcating solutions are unstable whenever for ε > 0 we have γ (ε) > 0, and locally 
asymptotically stable when for ε > 0 it holds that γ (ε) < 0. Replacing v(ε) = ε + εṽ(ε) and 
u = m + εbη + εw̃(ε) in the corresponding equation of (1.3), and then dividing by ε we obtain:

Mṽ(ε) + [−γ (ε)m − (1 + γ (ε))(εbη + w̃(ε)) − ε − εṽ(ε)](1 + ṽ(ε)) = 0 in �.

Replacing ṽ = v̄1 + εv̄(ε), w̃ = w̄1 + εw̄(ε) and γ (ε) = εγ1 + εγ̄ (ε) in the equation above, and 
considering the highest order term we have that

Mv̄1 + [−γ1m − bη − 1] = 0 in �.

Since ∂v̄1
∂n̂

= 0 on ∂�, we can integrate the equation above to obtain that

∫
�

γ1m − bη − 1dx = 0,

whence

γ1 = −
∫
�
(bη + 1) dx∫

�
mdx

.

Thus, if we set b∗ as in (4.21) we have that: if b > b∗, γ1 > 0 and then c = 1 + γ (ε) > 1, while 
if b < b∗, γ1 < 0 and then c = 1 + γ (ε) < 1, for all ε > 0, as claimed.

Finally, let us prove that b∗ > 1. Observe that multiplying the equation (4.18) by η
m

and 
integrating over �, we obtain

−
∫
�

α(x)

∣∣∣∇ η

m

∣∣∣2
dx −

∫
�

η2 dx =
∫
�

η dx,

thus 
∫
�

η2 dx <
∫
�

−η dx, whence 
∫
�

η2 dx <
(∫

�
η2 dx

) 1
2 |�| 1

2 , and then

∫
�

η2 dx < |�|.

On the other hand,

b∗ = |�|∫
�

−η dx
>

|�|(∫
�

η2 dx
) 1

2 |�| 1
2

,

and using the previous inequality, we conclude that b∗ >
|�| 1

2(∫
� η2 dx

) 1
2

> 1. �
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4.2. Local bifurcating solutions from (0, θ)

To study the bifurcation branch from (0, θ) we proceed as above. By Lemma 2.4 such bifur-
cation of positive steady states can only occur when b = bcr . We set some new variables

v = θ + z, b = bcr + δ, with z ∼ 0, δ ∼ 0. (4.22)

We define X and Y as in (4.15), and the map G : X ×R → Y as

G(u, z, δ) =
(

Lu + u(m − u − (bcr + δ)(θ + z))

Mz + θ(−z − cu) + z(m − θ − z − cu)

)
. (4.23)

By definition, (u, v) is a solution of (1.3) if and only if G(u, z, δ) = 0 with z, δ as in 
(4.22). As before, to establish the existence of a bifurcating branch we need to characterize 
Ker

(
D(u,z)G(0,0,0)

)
and Range

(
D(u,z)G(0,0,0)

)
.

Lemma 4.4. We have that

Ker
(
D(u,z)G(0,0,0)

) = 〈(ϕ0,ψ0)〉 and

Range
(
D(u,z)G(0,0,0)

) = {
(f, g) ∈ Y /

∫
�

ϕ0
m

f dx = 0
}
,

(4.24)

where ϕ0 > 0 is a positive solution of

Lϕ0 + (m − bcrθ)ϕ0 = 0 in �, ∇ ϕ0

m
· n̂ = 0 on ∂�, (4.25)

and ψ0 < 0 is the unique solution of

Mψ0 + ψ0(m − 2θ) = cθϕ0 in �, ∇ψ0 · n̂ = 0 on ∂�. (4.26)

Proof. After some straightforward computation we have that

D(u,z)G(0,0, δ)(ϕ,ψ) =
(

Lϕ + ϕ(m − (bcr + δ)θ)

Mψ + (m − 2θ)ψ − cθϕ

)
. (4.27)

Since the equation

Mψ + (m − 2θ)ψ = f in �, ∇ψ · n̂ = 0 on ∂�,

is solvable for any f ∈ C0,μ(�̄), we have that (4.24) follows, with ϕ0, ψ0 defined as in (4.25), 
(4.26). �

Observe that we can write ψ0 = cξ where

Mξ + ξ(m − 2θ) = θϕ0 in �, ∇ξ · n̂ = 0 on ∂�. (4.28)
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Proposition 4.5. There exists a neighborhood U of ((0, θ), bcr ) in X × R, such that only pos-
itive solutions of (1.3) in U are {(0, θ)} × R or along a smooth curve � = {u(ε), v(ε), b(ε)) :
ε ∈ (−ε0, ε0)} for some ε0 > 0 with u = εϕ0 + εw̃(ε), v = θ + εψ0 + εz̃(ε), b = bcr + δ(ε), with 
w̃(0) = z̃(0) = 0 and δ(0) = 0.

Proof. By Lemma 4.4 to apply the Crandall–Rabinowitz Theorem we just need to check that

D2
((w,v),δ)G(0,0,0)(ϕ0,ψ0) /∈ Range

(
D(w,v)G(0,0,0)

)
.

After a simple computation, we obtain that

D2
((w,v),δ)G(0,0,0)(ϕ0,ψ0) = (−ϕ0θ,0),

and (−ϕ0θ, 0) /∈ Range
(
D(w,v)G(0,0,0)

)
since

∫
�

ϕ0

m
(−ϕ0θ) dx =

∫
�

−ϕ2
0θ

m
dx < 0. �

Proposition 4.6. Set

c∗ = −
∫
�

ϕ3
0

m
dx

bcr

∫
�

ϕ2
0ξ

m
dx

, (4.29)

where ϕ0 and ξ are as defined in (4.25) and (4.28) respectively. The bifurcating solutions (εϕ0 +
εw̃(ε), θ + εψ0 + εz̃(ε)) of (1.1) for b = bcr + δ(ε) as given in Proposition 4.5, are unstable for 
c > c∗, and locally asymptotically stable for c < c∗.

Proof. As in the proof of Proposition 4.3, we just need to obtain the direction of the bifurcation 
branch according to the parameter δ. From Lemma 2.4 we will have that the positive bifurcating 
solutions are unstable whenever for ε > 0 we have δ(ε) > 0, and locally asymptotically stable 
when for ε > 0 it holds that δ(ε) < 0. To determine the sign of δ(ε) we consider a first order 
expansion of δ(ε), w̃(ε) and z̃(ε):

δ(ε) = εδ1 + εδ̂(ε), w̃(ε) = εw1 + εŵ(ε), z̃(ε) = εz1 + εẑ(ε),

with δ̂(0) = 0, ŵ(0) = 0 and ẑ(0) = 0. Setting u = εϕ0 + ε2(w1 + ŵ(ε)), v = θ + εψ0 +
ε2(z1 + ẑ(ε)) and b = bcr + ε(δ1 + δ̂(ε)) in (1.3), and then computing the ε2 terms, we obtain 
that (w1, z1) satisfy:

⎧⎪⎨
⎪⎩

Lw1 + w1(m − bcrθ) = ϕ0(ϕ0 + δ1θ + bcrψ0) in �,

Mz1 + z1(m − 2θ) − cθw1 = ψ0(ψ0 + cϕ0) in �,

∇ w1 · n̂ = ∇z · n̂ = 0 on ∂�.

(4.30)
m 1
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Thus, using (4.27) we can write this system as

D(u,z)G(0,0,0)(w1, z1) =
(

ϕ0(ϕ0 + δ1θ + bcrψ0)

ψ0(ψ0 + cϕ0)

)
,

so, the right hand side of the above equation must belong to the range of D(u,z)G(0,0,0), which 
using (4.24) is equivalent to having δ1 satisfy

∫
�

ϕ0

m
(ϕ0(ϕ0 + δ1θ + bcrψ0) dx = 0,

so that by replacing ψ0 with cξ we obtain that

δ1

∫
�

ϕ2
0θ

m
dx = −

⎛
⎝∫

�

ϕ3
0

m
dx + cbcr

∫
�

ϕ2
0ξ

m
dx

⎞
⎠ .

Since 
∫
�

ϕ3
0

m
dx > 0 and 

∫
�

ϕ2
0ξ dx < 0 there exists a unique c∗ given by (4.29) for which δ1

changes sign. Indeed, for c > c∗ we have that δ1 > 0 and then δ(ε) > 0 for ε > 0, while for 
c < c∗ we have that δ1 > 0 and so δ(ε) < 0 for ε > 0. This concludes the proof. �
4.3. Global bifurcation

Now, we will prove a result concerning the continuation of the local bifurcation branch from 
(m, 0).

For this section consider V = {(u, v, c) ∈ X × R : u > 0, c > 0} and b > 0 fixed. From [8]
section 6, we have the following proposition. The best current version of the underlying global 
bifurcation theory can be found in [15].

Proposition 4.7. Let �+, �− be the two branches of solutions defined in (4.20). Then �+ and 
�− are contained in C, where C is a connected component of S̄ with S = {(u, v, c) ∈ V :
F(u, v, c) = 0, (u, v) �= (m, 0)}. Let C+ be the connected component of C\�− containing �+. 
Then C+ satisfies one of the following options:

(i) It is not compact in V .
(ii) It contains a point (m, 0, c) with c �= 1.

(iii) It contains a point (u, v, c) where (u, v) �= (m, 0) and (u, v) ∈ Z, where Z is any comple-
mentary space of 〈(bη, 1)〉.

We must determine which of the options holds for C+. First, we need the following lemmas.

Lemma 4.8. For all c we have that (0, 0, c) /∈ S̄.

Proof. Suppose there exists a sequence (un, vn, cn) in V converging to (0, 0, c) in X × R, so 
that for n large enough we have un(m − un − bvn) > 0. On the other hand, by integrating the 
first equation of (1.3) we get that 

∫
�

un(m − un − bvn) = 0, which is a contradiction. �
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Lemma 4.9. Let (u, v, c) ∈ C+ be such that min�̄ v = 0, then (u, v) = (m, 0).

Proof. The function v satisfies:

{
Mv + v(m − u − cv) = 0 in �,

∇v · n̂ = 0 on ∂�.

By maximum principle we conclude v ≡ 0 and u satisfies:

{
Lu − (m − u)u = 0 in �,

∇ u
m

· n̂ = 0 on ∂�.

As u ≥ 0 we conclude that u = m or u = 0. By Lemma 4.8 we get u = m. �
Proposition 4.10. The connected component C+ is not compact in V . Moreover, if (u, v, c) ∈ C+
then v ≥ 0.

Proof. By Proposition 4.7 we must rule out the options (ii) and (iii).
In X ×R consider the sets A, B given by:

A = {(u, v, c) ∈ C+ : min
�̄

v > 0}, B = {(u, v, c) ∈ C+ : min
�̄

v < 0}

As bifurcation of positive steady states from (m(x), 0) only occurs when c = 1, we conclude that 
Ā = A ∪ {(m, 0, 1)} and B̄ contains B plus possible solutions of the form (m, 0, c) with c �= 1
by Lemma 4.9. If both Ā, B̄ were non-empty then C+ would be the union of two disjoint closed 
sets, contradicting the connectedness of C+. As Ā contains �+, we conclude that B̄ is empty. 
This rules out option (ii) and proves positivity in the variable v.

In order to rule out (iii), choose as complement of 〈(bη, 1)〉 the space given by Z =
{(u, v) ∈ X : ∫

�
v = 0} and suppose we have a solution (u, v, c) as asserted in (iii). In particular, 

we have that min�̄ v ≤ 0. Take (u0, v0, c0) ∈ �+ so that min�̄ v0 > 0, then by the intermediate 
value theorem we get that there exists (u1, v1, c1) ∈ C+ such that min�̄ v1 = 0, so by Lemma 4.9
we get (u1, v1) = (m, 0). Notice that c1 �= 1 because C+\{(m, 0, 1)} is connected, as the only so-
lutions in C+ close enough to (m, 0, 1) are in �+ and we can restrict to C+\{(m, 0, 1)}. Therefore 
we conclude that option (iii) implies option (ii) that was ruled out. �

By Corollary 2.7 the set of positive steady states is uniformly bounded in X. Using Sobolev 
embeddings and elliptic regularity, we conclude that non-compactness of C+ in V means that 
u → 0, c → 0 or c → ∞. We must determine which of the cases occurs in terms of parameter b.

We start by studying the case when u → 0:

Lemma 4.11. Let (un, vn, cn) be a sequence in C+ such that un → 0 in W 2,p(�) and cn is 
bounded, then vn → θ in W 2,p(�) and b = bcr .

Proof. Without loss of generality we can assume cn converges to some c̄. Consider ϕn = un||un||∞
and write system (1.3) in terms of ϕn and vn as:
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⎧⎪⎨
⎪⎩

Lϕn + ϕn(m(x) − un − bvn) = 0 in �,

Mvn + vn(m(x) − cnun − vn) = 0 in �,

∇ ϕn

m
· n̂ = 0, ∇vn · n̂ = 0 on ∂�.

By Sobolev embeddings and elliptic regularity we can assume there exists (ϕ̄, v̄) ∈ X such that 
(ϕn, vn) → (ϕ̄, v̄). Note that v̄ satisfies:

{
Mv̄ + v̄(m(x) − v̄) = 0 in �,

∇v̄ · n̂ = 0 on ∂�.

By Lemma 4.8 we get v̄ = θ , so ϕ̄ satisfies:

{
Lϕ̄ + ϕ̄(m(x) − bθ) = 0 in �,

∇ ϕ̄
m

· n̂ = 0 on ∂�.
(4.31)

We conclude that ϕ̄ is a positive eigenfunction of problem (2.7) where the corresponding eigen-
value equals zero. This implies b = bcr . �
Proposition 4.12. Consider b = bcr and suppose there exists a sequence (un, vn, cn) in C+ such 
that un → 0. Then vn → θ and cn → c∗, where c∗ is the value defined in (4.29).

Proof. By Theorem 3.2 we get the sequence cn must be bounded and without loss of generality 
we can suppose cn → c̄, for some c̄ ≥ 0. Let ϕn = un||un||∞ . Using the same arguments as in the 

proof of Lemma 4.11 we get (ϕn, vn) → (ϕ̄, θ) in X, where ϕ̄ is solution of (4.31) with b̄ = bcr

and ||ϕ̄||∞ = 1.
Now define wn so that vn = θ + wn, so that the equation of ϕn may be written as:

{
Lϕn + ϕn(m(x) − bcrθ)ϕn = unϕn + bcrwnϕn in �,

∇ ϕn

m
· n̂ = 0 on ∂�.

If we multiply this equation by ϕ̄
m

and equation (4.31) by ϕn

m
, we get by subtracting and integra-

tion by parts that:

∫
�

unϕnϕ̄

m
dx + bcr

∫
�

wnϕnϕ̄

m
dx = 0. (4.32)

Next, we rewrite the equation of vn in terms of wn as:

{
Mwn + (m − 2θ)wn = w2

n + cnunθ + cnunwn in �,

∇wn · n̂ = 0 on ∂�.

Then there exists C > 0, independent of n such that

||wn||2,p ≤ C(||w2||p + cn||unθ ||p + cn||unwn||p).
n
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Using this estimate and the fact that (un, wn) → (0, 0) in X, we get ψn = wn||un||∞ is bounded 
uniformly. Also ψn satisfies the equation:

{
Mψn + (m − 2θ)ψn = ψnwn + cnϕnθ + cnunψn in �,

∇ψn · n̂ = 0 on ∂�.

By Sobolev embeddings and elliptic regularity argument we can suppose that ψn → ψ̄ in 
W 2,p(�), where ψ̄ is solution of the problem:

{
Mψ̄ + (m − 2θ)ψ̄ = c̄ϕ̄θ in �,

∇ψ̄ · n̂ = 0 on ∂�.

Therefore ψ̄ = c̄ξ , where ξ < 0 is solution of the equation (4.28). Finally, dividing equality 
(4.32) by ||un||∞ and taking limit we get:

∫
�

ϕ̄3

m
dx + bcr c̄

∫
�

ξϕ̄2

m
dx = 0.

So we obtain c̄ = c∗ as defined in (4.29). �
Now, we must study the case when c → 0.

Proposition 4.13. Suppose there exists a sequence (un, vn, cn) in C+ such that cn → 0. Then 
b < bcr , vn → θ and un → ū where ū is the unique positive solution of:{

Lū + (m − bθ − ū)ū = 0 in �,

∇ ū
m

· n̂ = 0 on ∂�.
(4.33)

Proof. By Sobolev embeddings and elliptic regularity we can suppose that (un, vn) → (ū, v̄)

in X, with (ū, v̄) satisfying that:⎧⎪⎨
⎪⎩

Lū + ū(m − ū − bv̄) = 0 in �,

Mv̄ + v̄(m − v̄) = 0 = 0 in �,

∇ ū
m

· n̂ = 0, ∇v̄ · n̂ = 0 on ∂�.

From the second equation of this system we get v̄ = 0 or v̄ = θ . If v̄ = 0 we have ū = m by 
Lemma 4.8, so this implies that (m, 0, 0) ∈ C+, which contradicts that option (ii) in Proposi-
tion 4.7 does not hold. Therefore, we have v̄ = θ .

Observe that equation (4.33) has a positive solution if and only if b < bcr . If ū = 0 then 
b = bcr by Lemma 4.11 and cn → c∗ by Proposition 4.12, which is a contradiction. Therefore ū
must be a non-trivial solution and necessarily b < bcr . �

Finally we study the case when c → ∞.

Proposition 4.14. Suppose there exists a sequence (un, vn, cn) in C+ such that cn → ∞, then 
b > bcr and un → 0.



3484 R.S. Cantrell et al. / J. Differential Equations 265 (2018) 3464–3493
Proof. By Theorem 3.2 we get that b > bcr . On the other hand, (un, vn) satisfies the system:

⎧⎪⎨
⎪⎩

Lun + un(m(x) − un − bvn) = 0 in �,

Mvn + vn(m(x) − cnun − vn) = 0 in �,

∇ un

m
· n̂ = 0, ∇vn · n̂ = 0 on ∂�.

We get by integrating the second equation that 
∫
�

unvn → 0. Using Sobolev embeddings and 
regularity theory we can suppose that un → ū in W 2,p(�), where ū is solution of the equation:

{
Lū + ū(m(x) − ū) = 0 in �,

∇ ū
m

· n̂ = 0, on ∂�.

Then we have ū = 0 or ū = m. If ū = m, then for n large enough we have that vn(m − cnun −
vn) < 0 and on the other hand, by integrating the equation of vn we get 

∫
�

vn(m −cnun −vn) = 0, 
which is a contradiction and therefore ū = 0. �

Respecting the convergence of vn, we have following result:

Proposition 4.15. Under the same hypothesis of previous proposition, the sequence cnun is uni-
formly bounded. Consider ϕn = un||un||∞ and d ∈R a limit point of cn||un||∞. Then d > 0 and the 
sequence (ϕn, vn) has a limit point (ϕ̄, v̄) in X, which satisfies the system:

⎧⎪⎨
⎪⎩

Lϕ̄ + ϕ̄(m(x) − bv̄) = 0 in �,

Mv̄ + v̄(m(x) − v̄ − dϕ̄) = 0 in �,

∇ ϕ̄
m

· n̂ = 0, ∇v̄ · n̂ = 0 on ∂�.

(4.34)

Proof. Observe that (ϕn, vn) satisfies the system:

⎧⎪⎨
⎪⎩

Lϕn + ϕn(m(x) − ||un||∞ϕn − bvn) = 0 in �,

Mvn + vn(m(x) − vn − cn||un||∞ϕn) = 0 in �,

∇ ϕn

m
· n̂ = 0, ∇vn · n̂ = 0 on ∂�.

(4.35)

By Sobolev embeddings and elliptic regularity we observe that up to a subsequence ϕn → ϕ̄

in W 2,p(�). Suppose that cn||un||∞ → ∞ then by integrating the equation of vn, we get that ∫
�

ϕnvn → 0. This implies that Lϕ̄ + mϕ̄ = 0 and 
∫
�

mϕ̄ = 0, which is a contradiction because 
ϕ̄ ≥ 0 and ||ϕ̄||∞ = 1. Hence, the sequence cnun is uniformly bounded and vn has a limit point 
v̄ in W 2,p(�).

Let d be a limit point of the cn||un||∞, then (ϕ̄, v̄) satisfies the system (4.34). If d = 0 we get 
by Lemma 4.8 that v̄ = θ since un → 0. Then by the equation of ϕ̄ we get b = bcr , which is a 
contradiction and therefore d > 0. �

In the case when c → ∞, we might have more than one limit for the sequence vn.
From the results of this section, we have proved the following theorem:
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Theorem 4.16. For the connected component C+, the following assertions hold:

(i) b = bcr if and only if the case u → 0 holds and c remains bounded in C+. In this case 
C+ = C+ ∪ {(0, θ, c∗)}, in other words (m, 0, 1) connects with the equilibrium (0, θ, c) only 
at c = c∗.

(ii) b < bcr if and only if the case c → 0 holds. In this case C+ = C+ ∪ {(ū, θ, 0)}, where ū is 
the unique positive solution of equation (4.33).

(iii) b > bcr if and only if the case c → ∞ holds. In this case we have also the case u → 0.

For the parameter c fixed, we have the corresponding results for the global bifurcation from 
(0, θ, bcr ), by studying the functional G defined in (4.23).

Theorem 4.17. Let B+ be the connected component containing the branch of positive solutions 
(u, v, b) bifurcating from (0, θ, bcr) and excluding the negative ones. The following assertions 
hold:

(i) c = 1 if and only if the case v → 0 holds and b remains bounded in B+. In this case 
B+ = B+ ∪ {(m, 0, b∗)} with b∗ defined in (4.21). In other words (0, θ, bcr) connects with 
the equilibrium (m, 0, b) only at b = b∗.

(ii) c < 1 if and only if the case b → 0 holds. In this case B+ = B+ ∪ {(m, v̄, 0)}, where v̄ is the 
unique positive solution of the problem.

{
Mv̄ + ((1 − c)m − v̄)v̄ = 0 in �,

∇v̄ · n̂ = 0 on ∂�.
(4.36)

(iii) c > 1 if and only if the case b → ∞ holds. In this case we have also the case v → 0.

5. Existence of multiple positive steady states

The key to providing examples for which equation (1.1) exhibits at least two positive steady 
state solutions is to construct bifurcating solutions from (m, 0) which are unstable or locally 
asymptotically stable, in parameter regions where (0, θ) shares the same stability properties. 
Since these solutions are ordered we can conclude the existence of a third steady state lying 
strictly between those, using a similar result as Proposition 2.2. To achieve this, it is key to 
estimate b∗ and bcr , which we will be able to do in certain situations. We consider α(x) = μα0(x)

and β(x) = νβ0(x), where μ, ν are positive parameters, yielding

Lu = μ∇ · α0(x)∇ u

m
and Mv = ν∇ · β0(x)∇v.

We define θ(ν) and η(μ) as the corresponding solutions of (2.5) and (4.18) respectively. The 
coefficient b∗(μ) defined in (4.21) is given by

b∗(μ) = − |�|∫
η(μ)dx

(5.37)

�
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while the coefficient bcr(μ, ν) can be written as

bcr (μ, ν) = sup
ϕ∈W 1,2(�)\{0}

[
−μ

∫
�

α0(x)|∇ϕ|2 dx + ∫
�

m2ϕ2 dx∫
�

mθ(ν)ϕ2 dx

]
. (5.38)

5.1. Existence of multiple solutions when μ ∼ 0 and ν ∼ ∞

In this subsection we will study b∗(μ) and bcr(μ, ν) in this case. For that we need to state the 
behavior of θ(ν) and η(μ).

Lemma 5.1. Let η(μ) be the solution of

μ∇ · α0(x)∇ η

m
− mη = m, in �, ∇ η

m
· n̂ = 0 on ∂�. (5.39)

Then η(μ) → −1 uniformly as μ → 0.

The lemma can be proved using some standard comparison arguments by constructing ap-
propriate sub-super solutions. As a direct corollary of this lemma, we obtain the behavior of 
b∗(μ).

Corollary 5.2. We have that limμ→0 b∗(μ) = 1.

Next, we establish the behavior of θ(ν) as the diffusion coefficient ν → ∞.

Lemma 5.3. We have that θ(ν) → 1
|�|

∫
�

m(x) dx in C2,λ(�̄) as ν → ∞.

Proof. We have that θ(ν) satisfies

ν∇ · β0(x)∇θ(ν) + θ(ν)(m(x) − θ(ν)) = 0 in �, ∇θ(ν) · n̂ = 0 on ∂�. (5.40)

By the maximum principle we have that ||θ(ν)||∞ ≤ maxx∈�̄ m(x). Then, multiplying (5.40) by 
θ(ν) and integrating in � we get

∫
�

β0(x)|∇θ(ν)|2 dx → 0 as ν → ∞.

Then, there exists a constant C such that, except possibly for a subsequence θ(ν) → C in 
W 1,2(�̄). By elliptic regularity estimates and Sobolev imbedding theorem, we also have that 
the convergence is in C2,λ(�̄). Integrating (5.40) we have that

∫
(m − θ(ν))θ(ν) dx = 0. (5.41)
�
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Thus taking the limit we get that 
∫
�
(m − C)C dx = 0, so either C = 0 or C = 1

|�|
∫
�

m(x) dx. 
The case C = 0 cannot happen since in this case

(m − θ(ν))θ(ν) > 0 for all large ν,

contradicting (5.41). Hence we have the desired limit. �
The following lemma is a well known result that will be useful to study bcr(μ, ν) in the 

limiting cases.

Lemma 5.4. For f ∈ L∞(�) we have that

sup
ϕ∈L2(�)

∫
�

f ϕ2 dx∫
�

ϕ2 dx
= ||f ||∞.

The next result gives the limiting behavior of bcr(μ, ν) as μ → 0 and ν → ∞.

Proposition 5.5.

bcr (μ, ν) → ||m||∞ |�|∫
�

m(x)dx
,

as μ → 0 and ν → ∞.

Proof. For V ∈ C(�̄), V > 0 define

Jμ(V ) = sup
ϕ∈W 1,2(�)\{0}

[
−μ

∫
�

α0(x)|∇ϕ|2 dx + ∫
�

m2ϕ2 dx∫
�

mV ϕ2 dx

]
. (5.42)

Observe that Jμ(V ) increases as μ decreases to 0, then

limμ↓0 Jμ(V ) = sup
ϕ∈W 1,2(�)\{0}

∫
�

m2ϕ2 dx∫
�

mV ϕ2 dx
= sup

ϕ∈L2(�)\{0}

∫
�

m2ϕ2 dx∫
�

mV ϕ2 dx

= sup
ϕ∈L2(�)\{0}

∫
�

m
V

ϕ2 dx∫
�

ϕ2 dx
=

∣∣∣∣∣∣m
V

∣∣∣∣∣∣
∞

= J0(V ),

where in the last equality we have used Lemma 5.4. By Dini’s theorem, we have that if K is 
a compact subset of C+(�̄) then Jμ(V ) → J0(V ) as μ ↓ 0 uniformly in K . Hence, since by 
Lemma 5.3 we have that θ(ν) → 1

|�|
∫
�

m(x) dx uniformly as ν → ∞, we obtain:

lim
μ→0 ν→∞bcr (μ, ν) = J0

(∫
�

mdx

|�|
)

=
∣∣∣∣
∣∣∣∣ m|�|∫

�
mdx

∣∣∣∣
∣∣∣∣
∞

= ||m||∞ |�|∫
�

mdx
,

concluding the proof. �
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Note that since m is positive and nonconstant

bcr(0,∞) ≡ ||m||∞ |�|∫
�

m(x)dx
> 1,

hence bcr(μ, ν) > 1 uniformly for μ small and ν large.

Theorem 5.6. Set b ∈ (1, bcr (0, ∞)). There exists μ0, ν0 such that for all 0 < μ < μ0, ν > ν0, 
there exists c for which the corresponding system (1.1) admits two positive steady states, one 
unstable and one locally asymptotically stable.

Proof. Observe that for such b, it holds that b∗(μ) < b < bcr(μ, ν) for μ small and ν large 
enough. For such b, μ and ν fixed we have that by Proposition 4.3, the bifurcating solutions 
u(ε) = m + w(ε), v = v(ε) for c = 1 + γ (ε) given in Proposition 4.2, are unstable. On the other 
hand, because b < bcr(μ, ν) the solution (0, θ(ν)) is unstable as stated in Lemma 2.4. Then, we 
have an ordered pair of steady states (0, θ(ν)) < (u(ε), v(ε)) of (1.1) which are unstable. By 
Theorem 10.2 and Corollary 7.6 in [12] we conclude that for c = 1 + γ (ε) the system (1.1) has 
an stable equilibria (ũ, ṽ) which satisfies (0, θ(ν)) < (ũ, ṽ) < (u(ε), v(ε)). �
5.2. Existence of multiple solutions when ν ∼ 0 and μ ∼ ∞

As before, to establish the existence of two positive steady states for (1.1) we need to study 
b∗(μ) and bcr(μ, ν).

Lemma 5.7. We have the following limits:

a) η(μ) → −m

∫
� m dx∫
� m2 dx

uniformly as μ → ∞.

b) θ(ν) → m uniformly as ν → 0.

The proof of this lemma is standard and will be omitted. As a corollary we obtain the behavior 
of b∗(μ).

Corollary 5.8.

lim
μ→∞b∗(μ) = |�| ∫

�
m2 dx(∫

�
mdx

)2

Observe that

b∗(∞) ≡ |�| ∫
�

m2 dx(∫
�

mdx
)2 > 1. (5.43)

Now we estimate bcr(μ, ν).

Proposition 5.9. As μ → ∞ and ν → 0 we have that bcr(μ, ν) → 1.
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Proof. Set ϕμ,ν to be a principal eigenfunction associated to bcr , that is a positive solution of

μ∇ · α0(x)∇ ϕμ,ν

m
+ ϕμ,ν(m(x) − bcrθ(ν)) = 0 in �, ∇ ϕμ,ν

m
· n̂ = 0 on ∂�, (5.44)

satisfying ||ϕμ,ν ||∞ = 1.
Now, observe that by Lemma 5.4 we have

bcr (μ, ν) ≤ sup
ϕ∈W 1,2(�)\{0}

∫
�

m2ϕ2 dx∫
�

mθ(ν)ϕ2 dx
=

∣∣∣∣
∣∣∣∣ m

θ(ν)

∣∣∣∣
∣∣∣∣∞ ,

and by Lemma 5.7 we obtain that bcr(μ, ν) is bounded independent of μ and ν.
Proceeding as in Lemma 5.3, and using Lemma 5.7 and the boundedness of bcr(μ, ν), we can 

show that ϕμ,ν converges uniformly, up to a subsequence, to a constant C as μ → ∞ and ν → 0. 
Since ||ϕμ,ν ||∞ = 1 we have that C = 1.

Finally, we integrate (5.44) in � to obtain

∫
�

ϕμ,ν(m − bcr (μ, ν)θ(ν)) dx = 0,

and by Lemma 5.7 we have that θ(ν) → m as ν → 0 from which we conclude that bcr(μ, ν) → 1
as μ → ∞ and ν → 0. �
Theorem 5.10. Set b ∈ (1, b∗(∞)), with b∗(∞) defined in (5.43). There exists μ0, ν0 such that 
for all μ > μ0, 0 < ν < ν0, there exists c for which the corresponding system (1.1) admits two 
positive steady states, one unstable and one locally asymptotically stable.

Proof. We proceed as in the proof of Theorem 5.6. By Corollary 5.8 and Proposition 5.9, it holds 
that bcr(μ, ν) < b < b∗(μ) for μ large and ν small enough. For such b, μ and ν fixed we have that 
by Proposition 4.3, the bifurcating solutions u(ε) = m +w(ε), v = v(ε) for c = 1 +γ (ε) given in 
Proposition 4.2, are locally asymptotically stable. On the other hand, because b < bcr(μ, ν) the 
solution (0, θ(ν)) is also locally asymptotically stable as stated in Proposition 2.4. Then, we have 
an ordered pair of steady states (0, θ(ν)) < (u(ε), v(ε)) of (1.1) which are stable. By Theorem 4 
in [11] we conclude that c = 1 + γ (ε) the system (1.1) has an unstable equilibria (ũ, ṽ) which 
satisfies (u(ε), v(ε)) < (ũ, ṽ) < (0, θ(ν)). �
6. Concluding observations

In (1.1) with b = c = 1, ideal free dispersal holds an evolutionary advantage over fickian dis-
persal, being both an evolutionary stable strategy and a neighborhood invader strategy. Allowing 
b and c to take in arbitrary positive values enables us to explore how and to what extent this 
advantage, which is based on the ability to match resources, broadly translates into an ecological 
advantage.

There are two aspects that are both rather immediate and striking. First of all, competitive 
exclusion of a fickian disperser by an ideal free disperser continues to hold whenever c ≥ 1
and b ≤ 1. This feature follows from having the result hold when b = c = 1 and comparison 
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principles. The second aspect concerns invasibility of the semi-trivial equilibria (m(x), 0) and 
(0, θ(x)). Here (m(x), 0) can be regarded as an ideal free distribution where as (0, θ(x)) can 
not. Both these equilibria are invasible under weak competition. Here, when 0 < b < 1, the ideal 
free disperser can increase if it is introduced at low densities when the fickian disperser is at 
its spatially varying carrying capacity θ(x). Likewise, when 0 < c < 1, the fickian disperser can 
increase when it is introduced at low densities whenever the ideal free disperser perfectly matches 
resources at its spatially varying carrying capacity m(x).

Once the competitive impact of the ideal free disperser on the fickian disperser becomes strong 
(i.e. c > 1), the ideal free dispersal strategy is no longer invasible by the fickian dispersal. On the 
other hand, the ideal free dispersal strategy can invade the fickian dispersal strategy for values 
of b up to some critical value bcr > 1, so that it can invade in the presence of strong compe-
tition up to some extent. One consequence here is that (1.1) exhibits permanence or uniform 
persistence when 0 < b < bcr and 0 < c < 1. In particular, a monotone dynamical system ap-
proach may be employed to conclude that (1.1) exhibits a global attracting order interval, i.e. is 
compressive [4].

When c > 1 and b > bcr , both semi-trivial equilibria for (1.1) are locally asymptotically sta-
ble, and it follows that (1.1) must have an componentwise positive equilibrium. On the other 
hand, when the competitive impact of the fickian disperser allows invasion by the ideal free dis-
perser (actually when b ∈ [0, bcr ]), a componentwise positive equilibrium is not possible once 
c ≥ c̄∗, with c̄∗ > 1, and thus (m(x), 0) is globally asymptotically stable. Likewise (0, θ(x)) is 
global asymptotically stable for 0 ≤ c ≤ 1 when b ≥ b̄∗ > bcr > 1.

As noted in Section 4, bifurcation from the semi-trivial steady state (m(x), 0) to component-
wise positive steady states of (1.1) occurs along the line c = 1, while bifurcation from the steady 
state (0, θ(x)) to componentwise positive steady states of (1.1) happens when b = bcr . These bi-
furcations create the possibility of multiple positive equilibria for (1.1). For b small, bifurcation 
from (m(x), 0) is in the decreasing direction with respect to the c parameter and the resulting 
positive equilibria are stable as solutions of (1.1), whereas for large values of b, the direction is 
increasing with respect to c and the resulting equilibria are unstable as solutions of (1.1). The 
value of b (i.e. b∗) where the direction of bifurcation switches depends on the operator L and the 
function m but is independent of M and θ , while the value bcr depends on L, m and θ (and hence 
by extension M). As observed, b∗ > 1 and clearly b∗ < b̄∗. But, as we show in Theorems 5.6
and 5.10, we can have b∗ < bcr or b∗ > bcr . Corresponding results can be obtained for the bifur-
cation from (0, θ(x)). However, in this case c∗ depends on L, M , m, θ and bcr and we have not 
been able to determine the value of c∗ relative to 1. In particular, we do not know whether we 
can have cases where c∗ < 1 and other cases where c∗ > 1.

So let us suppose that 1 < b∗ < bcr . Then for values of b ∈ (b∗, bcr ), the bifurcation from 
(m(x), 0) to componentwise positive steady states of (1.1) tracks initially in c in the increasing 
direction with the corresponding positive steady states unstable as solutions of (1.1). These pos-
itive steady states continue as long as c remains positive. There are no such steady states for 
this value of b for c ≥ c̄∗. Consequently the continuum of positive steady states C+, extend up-
wards in c to some maximum value cmax(b) < c̄∗, exhibits a saddle node bifurcation and extends 
downward in c to c = 0. Consequently, (1.1) has at least two steady states for this value of b
when c ∈ (1, cmax(b)). We have that (1.1) is permanent for c ∈ (0, 1) and that the component-
wise positive steady states approach (ū, θ) as c → 0, where ū is the unique solution of (4.33). 
Note that ū → 0 as b ↑ bcr . The track of this continuum of componentwise positive steady states 
is illustrated in Fig. 1.
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Fig. 1. The curve S+ accounts for {(||u||∞, c) : (u, v, c) ∈ C+} with C+ defined in Proposition 4.7.

Fig. 2. The curve S+ accounts for {(||u||∞, c) : (u, v, c) ∈ C+} with C+ defined in Proposition 4.7.

If b∗ > bcr , bifurcation from (m(x), 0) to componentwise positive steady states of (1.1)
is initially decreasing in c for values of b ∈ (bcr , b∗) and positive steady states are locally 
asymptotically stable as solutions of (1.1). The continuum C+ cannot exit the region of com-
ponentwise positive solutions through values of c that approach 0, since b > bcr . So there must 
be cmin(b) ∈ (0, 1) where there is a saddle node bifurcation in terms of c, and the continuum 
continues through increasing values of c as c → ∞. This guarantees multiple componentwise 
positive equilibria for c ∈ (cmin(b), 1). The track of this continuum of positive steady states is 
illustrated in Fig. 2.

Analogous results hold relative to bifurcation from (0, θ(x)) to componentwise positive steady 
states of (1.1) when either c∗ > 1 or c∗ < 1. As noted, we can not determine whether one or both 
of these alternatives are possible. However for the sake of argument, assume that 1 < b∗ < bcr

and c∗ > 1 in this case, Fig. 3 gives a schematic overview of our results in terms of the bc−plane
in Fig. 3.

In region (I) there is stable coexistence via pairwise invasibility, while in (III) there is unsta-
ble coexistence via stability of both semi-trivial equilibria. In regions (II) and (IV) one of the 
semi-trivial steady states, (0, θ(x)) and (m(x), 0) respectively, is globally asymptotically stable 
via competitive overmatch of the non-ideal free disperser or the ideal free disperser. In (V) we 
have that (m(x), 0) is globally asymptotically stable (advantage of ideal free dispersal). In the 
region (A) multiple componentwise equilibria occur.
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Fig. 3. Schematic in (b, c) parameter space of steady states of (1.1) in the case where 1 < b < bcr and 1 < c∗. Vertical 
arrows indicate direction of bifurcation from (m(x), 0) at c = 1 and horizontal arrows indicate direction of bifurcation 
from (0, θ(x)) at bcr . Multiple componentwise positive equilibria occur in region (A).

Acknowledgments

R.S.C. and C.C. are supported in part by NSF Awards DMS 11-18623 and 15-14752. S.M. and 
N.T. are supported by FONDECYT 1130602, CONICYT + PIA/Concurso de Apoyo a Centros 
Científicos y Tecnológicos de Excelencia con Financiamiento Basal AFB170001.

References

[1] I. Averill, Y. Lou, D. Munther, On several conjectures from evolution of dispersal, J. Biol. Dyn. 6 (2012) 117–130.
[2] L. Korobenko, E. Braverman, On logistic models with a carrying capacity dependent diffusion: stability of equilibria 

and coexistence with a regularly diffusing population, Nonlinear Anal. Ser. B: Real World Appl. 13 (6) (2012) 
2648–2658.

[3] L. Korobenko, E. Braverman, On evolutionary stability of carrying capacity driven dispersal in competition with 
regularly diffusing populations, J. Math. Biol. 69 (5) (2014) 1181–1206.

[4] R.S. Cantrell, C. Cosner, Spatial Ecology Via Reaction–Diffusion Equations, John Wiley and Sons, Chichester, UK, 
2003.

[5] R.S. Cantrell, C. Cosner, Y. Lou, D. Ryan, Evolutionary stability of ideal free dispersal strategies: a nonlocal dis-
persal model, Can. Appl. Math. Q. 20 (1) (2012) 15–38.

[6] R.S. Cantrell, C. Cosner, Y. Lou, Evolution of dispersal and the ideal free distribution, Math. Biosci. Eng. 7 (1) 
(2010) 17–36.

[7] R.S. Cantrell, C. Cosner, Y. Lou, Approximating the ideal free distribution via reaction–diffusion–advection equa-
tions, J. Differential Equations 245 (12) (2008) 3687–3703.

[8] R.S. Cantrell, C. Cosner, Y. Lou, C. Xie, Random dispersal versus fitness-dependent dispersal, J. Differential Equa-
tions 254 (7) (2013) 2905–2941.

[9] X. Chen, R. Hambrock, Y. Lou, Evolution of conditional dispersal: a reaction–diffusion–advection model, J. Math. 
Biol. 57 (3) (2008) 361–386.

[10] C. Cosner, J. Dávila, S. Martínez, Evolutionary stability of ideal free nonlocal dispersal, J. Biol. Dyn. 6 (2) (2012) 
395–405.

[11] E.N. Dancer, P. Hess, Stability of fixed points for order-preserving discrete-time dynamical systems, J. Reine Angew. 
Math. 419 (1991) 125–139.

[12] H. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math. 383 (1) 
(1988) 1–53.

http://refhub.elsevier.com/S0022-0396(18)30279-1/bib412D4C2D4Ds1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib6272617665726D616E32s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib6272617665726D616E32s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib6272617665726D616E32s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib6272617665726D616E31s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib6272617665726D616E31s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib4343626F6F6Bs1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib4343626F6F6Bs1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib43434C52s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib43434C52s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib43434C31s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib43434C31s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib43434C32s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib43434C32s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib43434C58s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib43434C58s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib6368656E2D68616D2D6C6F75s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib6368656E2D68616D2D6C6F75s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib43444Ds1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib43444Ds1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib44616E6365722D4865737331393931s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib44616E6365722D4865737331393931s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib48697273636831393838s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib48697273636831393838s1


R.S. Cantrell et al. / J. Differential Equations 265 (2018) 3464–3493 3493
[13] K.-Y. Lam, D. Munther, A remark on the global dynamics of competitive systems on ordered Banach spaces, Proc. 
Amer. Math. Soc. 144 (3) (2016) 1153–1159.

[14] K.-Y. Lam, D. Munther, Invading the ideal free distribution, Discrete Contin. Dyn. Syst. Ser. B 19 (10) (2014) 
3219–3244.

[15] J. López-Gómez, Global bifurcation for Fredholm operators, Rend. Istit. Mat. Univ. Trieste 48 (2016) 539–564.
[16] H. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, 

Mathematical Surveys and Monographs, vol. 41, American Mathematical Society, Providence, RI, 1995.

http://refhub.elsevier.com/S0022-0396(18)30279-1/bib4C4D31s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib4C4D31s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib4C4D32s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib4C4D32s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib4C6F70657A2D476F6D657As1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib48616C536D697468s1
http://refhub.elsevier.com/S0022-0396(18)30279-1/bib48616C536D697468s1

	On a competitive system with ideal free dispersal
	1 Introduction
	2 Preliminary results
	3 Nonexistence of positive steady states
	4 Bifurcating solutions from the semitrivial steady states
	4.1 Local bifurcating solutions from (m(x),0)
	4.2 Local bifurcating solutions from (0, θ)
	4.3 Global bifurcation

	5 Existence of multiple positive steady states
	5.1 Existence of multiple solutions when μ~0 and ν~∞
	5.2 Existence of multiple solutions when ν~0 and μ~∞

	6 Concluding observations
	Acknowledgments
	References


